
Algebraic Approach for Recovering Topology in
Distributed Camera Networks

Edgar J. Lobaton
Parvez Ahammad
S. Shankar Sastry

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-4

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-4.html

January 14, 2009



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
14 JAN 2009 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2009 to 00-00-2009  

4. TITLE AND SUBTITLE 
Algebraic Approach for Recovering Topology in Distributed Camera 
Networks 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
Camera networks are widely used for tasks such as surveillance, monitoring and tracking. In or- der to
accomplish these tasks, knowledge of lo- calization information such as camera locations and other
geometric constraints about the envi- ronment (e.g. walls, rooms, and building layout) are typically
considered to be essential. How- ever, this information is not always required for many tasks such as
estimating the topology of camera network coverage, or coordinate-free ob- ject tracking and navigation.
In this paper we propose a simplicial representation (called CN-Complex) that can be constructed from
dis- crete local observations from cameras, and uti- lize this novel representation to recover the topo-
logical information of the network coverage. We prove that our representation captures the cor- rect
topological information from network cov- erage for 2.5D layouts, and demonstrate their utility in
simulations as well as a real-world experimental set-up. Our proposed approach is particularly useful in
the context of ad-hoc camera networks in indoor/outdoor urban envi- ronments with distributed but
limited computa- tional power and energy. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

20 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Copyright  2009, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
This work was funded by the Army Research Office (ARO) Multidisciplinary
Research Initiative (MURI) program under the title "Heterogeneous Sensor
Webs for Automated Target Recognition and Tracking in Urban Terrain"
(W911NF-06-1-0076), and the Air Force Office of Scientific Research
(AFOSR) grant FA9550-06-1-0267, under a sub-award from Vanderbilt
University.



Algebraic Approach for Recovering Topology in Distributed

Camera Networks

Edgar J. Lobaton, Parvez Ahammad, S. Shankar Sastry ∗†
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Abstract

Camera networks are widely used for tasks such
as surveillance, monitoring and tracking. In or-
der to accomplish these tasks, knowledge of lo-
calization information such as camera locations
and other geometric constraints about the envi-
ronment (e.g. walls, rooms, and building layout)
are typically considered to be essential. How-
ever, this information is not always required for
many tasks such as estimating the topology of
camera network coverage, or coordinate-free ob-
ject tracking and navigation. In this paper,
we propose a simplicial representation (called
CN -Complex) that can be constructed from dis-
crete local observations from cameras, and uti-
lize this novel representation to recover the topo-
logical information of the network coverage. We
prove that our representation captures the cor-
rect topological information from network cov-
erage for 2.5D layouts, and demonstrate their
utility in simulations as well as a real-world
experimental set-up. Our proposed approach

∗E.J. Lobaton and S.S. Sastry are with the Electrical
Engineering and Computer Sciences Department, Univer-
sity of California at Berkeley, Berkeley, CA 94720, USA

†P. Ahammad is with the Janelia Farm Research Cam-
pus, Howard Hughes Medical Institute, Ashburn, VA
20147, USA

is particularly useful in the context of ad-hoc
camera networks in indoor/outdoor urban envi-
ronments with distributed but limited computa-
tional power and energy.

1 Introduction

Future generations of sensor networks are in-
variably going to include multiple types of sen-
sors - including spatial sampling sensors such
as cameras or active range scanners. Sensors
like cameras will be the dominant consumers
of bandwidth and power in such heterogenous
sensor networks. Thus, a clear understanding
of the constraints (such as bandwidth consump-
tion, power consumption, spatio-temporal sam-
pling) posed by camera sensors in the context
of computation and communication will play a
critical role in defining the bounds for feasibil-
ity of performing certain tasks in a heterogenous
sensor network. In other words, such an under-
standing in the context of cameras could tell us
whether our design of the heterogenous network
will be able to perform the designated task or
not - and what conditions are necessary in order
to perform such tasks.

Identification of the exact location of targets
and objects in an environment is essential for
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many surveillance applications in the realm of
sensor networks. However, there are situations
in which the localization of the sensors is not
known (e.g. unavailability of GPS, or ad-hoc
network setup). A common approach to over-
coming this challenge has been to determine the
exact localization of the sensors and reconstruc-
tion of the surrounding environment. Neverthe-
less, we will provide evidence supporting the hy-
pothesis that many of the tasks at hand may not
require exact localization information. For in-
stance, when tracking individuals in an airport,
we may want to know whether they are in the
vicinity of a specific gate. In this scenario, it is
not absolutely necessary to know their exact lo-
cation. Another example is navigation through
an urban environment. This task can be accom-
plished by making use of target localization and
a set of directions such as where to turn right,
and when to keep going straight. In both situa-
tions, a general description of our surroundings
and the target location is sufficient. The type
of information that we desire is a topological de-
scription of the environment that captures the
appropriate structure of the environment.

One of the fundamental questions in the con-
text of camera networks is whether a network is
limited to perform only tasks that a single cam-
era can perform but at a larger scale, or if the
total network is “greater” than the sum of the
parts. Imagine a camera network where no inter-
relationship between the cameras is known. It
is natural to ask what the spatial relationship
between cameras is. For an application such as
surveillance in which multiple views are certainly
useful, we investigate how object tracking infor-
mation from multiple cameras can be aggregated
and analyzed. A related and important ques-
tion here is as to how we manage the processing
and flow of data between the cameras. We note

that all of these questions can be approached us-
ing knowledge of the topology of the coverage of
the network. In particular, topology awareness
makes it possible to design more efficient routing
and broadcasting schemes as it is discussed by M.
Li et al [9]. This knowledge in turn can also aid
with control mechanism for more energy-efficient
usage.

Figure 1 serves as a didactic tool to under-
stand the information required for our approach
to coordinate free tracking and navigation prob-
lems. Observe that the complete floor plan
(left) and corresponding abstract representation
(right) serves an equivalent purpose. The ab-
stract representation allows us to track a target
and navigate through the environment. Our goal
in this context is to use the continuous observa-
tions from camera nodes to extract the necessary
symbols to create this representation.

Figure 1: A physical (left) and an abstract
(right) layout of an environment are compared.
In both cases we observe a target and the corre-
sponding path for its motion.

In this paper, we consider a camera network
where each camera node can perform local com-
putations, extract some symbolic/discrete obser-
vations to be transmitted for further processing.
This conversion to symbolic representation alle-
viates the communication overhead for a wire-
less network. We then use these discrete ob-
servations to build a model of the environment
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without any prior localization information of ob-
jects or the cameras themselves. Once such non-
metric reconstruction of the camera network is
accomplished, this representation can be used for
tasks such as coordinate-free navigation, target-
tracking, and path identification.

The rest of the discussion is as follows. We
first start with a brief and informal discussion
about different approaches to capturing topolog-
ical information in sensor networks and discuss
the related work in this domain. We then in-
troduce the algebraic topological tools used for
constructing our model. Next, we discuss how
the topological recovery (or non-metric recon-
struction) of the camera network can be done
in 2.5D along with simulation and experiments.
Appendix A provides a brief introduction to the
algebraic topological tools and terminology used
for this work.

2 Related Work

Finding the topology of a domain embedded in
R

2 is closely related to detecting holes. There
has been much work on the detection and re-
covery of holes by topological methods for sen-
sor networks, most of which consider symmetric
coverage (explicitly or implicitly) or high enough
density of sensors in the field. In particular, Vin
de Silva and Ghrist [6] obtain the Rips complex
based on the communication graph of the net-
work and compute homologies using this repre-
sentation. These methods assume some symme-
try in the coverage of each sensor node (such
as circular coverage), however, such assumptions
are not valid for camera networks. Spatial sam-
pling of plenoptic function [2] from a network of
cameras is rarely i.i.d. (independent and identi-
cally distributed). The notion of spatial coher-

ence encountered in the context of camera net-
works is not handled in traditional sensor net-
work literature.

Connectivity between overlapping camera
views by determining the correspondence mod-
els between cameras and extracting homogra-
phy models has been approached by Stauffer
and Tieu [15]. Cheng et al [5] build a vi-
sion graph in a distributed manner by exchang-
ing feature descriptors from each camera view.
In their work, each camera encodes a spa-
tially well-distributed set of distinctive, approx-
imately viewpoint-invariant feature points into
a fixed-length “feature digest” that is broadcast
throughout the network to establish correspon-
dence between cameras. Yeo et al [16] utilize a
distributed source coding framework to exchange
compact feature descriptors in a rate-efficient
manner to establish correspondence between var-
ious camera views.

Marinakis et al [11] work on finding connec-
tivity between non-overlapping coverage of cam-
eras by using only reports of detection and no
description of the target. They use a Markov
model for modeling the transition probabilities
and minimize a functional using Markov Chain
Monte Carlo Sampling. They also present a
different formulation of the same problem with
“timestamp free” observation with only order-
ing available (still no target description) [12].
Other approaches to solving the same problem
with target identification have been explored by
Zou et al [17]. Camera network with overlaps
have been studied using the statistical consis-
tency of the observation data by Makris et al[10].
Rahimi et al [14] describe a simultaneous cali-
bration and tracking algorithm (with a networks
of non-overlapping sensors) by using velocity ex-
trapolation for a single target.
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3 The Environment Model

3.1 The Problem in 2.5D

Our problem will be defined in terms of the de-
tection of a target moving through an environ-
ment. For the sake of mathematical clarity, we
first focus on the case of a single target mov-
ing through the environment. Let us start by
describing our setup:

The Environment in 2.5D : We consider a
domain in 3D with the following constraints:

• All objects and cameras in the environ-
ment will be within the space defined by the
planes z = 0 (the “floor”) and z = hmax (the
“ceiling”).

• Objects in the environment consists of static
“walls” erected perpendicular to our plane
from z = 0 to z = hmax. The perpendicular
projection of the objects to the plane z = 0
must have a piecewise linear boundary. Ob-
jects must enclose a non-zero volume.

Cameras in 2.5D : A camera α has the fol-
lowing properties:

• It is located at position o3D
α with an arbi-

trary 3D orientation and a local coordinate
frame Ψ3D

α .

• Its camera projection in 3D , Π3D
α :

Fα → R
2, is given by

Π3D
α (p) = (px/pz, py/pz),

where p is given in coordinate frame Ψ3D
α ,

and Fα ⊂ ({(x, y, z) | z > 0}), referred to as
the field of view (FOV) of the camera, is
an open convex set such that its closure is
a convex cone based at o3D

α . The image of
this mapping, i.e. Π3D

α (Fα), will be called
the image domain Ω3D

α .

The Target in 2.5D : A target will have the
following properties:

• The target will be a line segment perpen-
dicular to the bounding planes of our do-
main which connects the points (x, y, 0) to
(x, y, ht), where x and y are arbitrary and
ht ≤ hmax is the height of the target. The
target is free to move along the domain as
long as it does not intersect any of the ob-
jects in the environment.

• A target is said to be detected by camera
α if there exists a point p := (x, y, z) in
the target such that p ∈ Fα and o3D

α p does
not interscect any of the objects in the en-
vironment.

Note that these assumptions may seem very
restrictive, but they are satisfied by most camera
networks in indoor and outdoor environments.
Also, some of these choices in our model (such
as the vertical line target and polygonal objects)
are made in order to simplify our analysis. We
will see that our methods work in real-life sce-
narios through our experiments.

The example in figure 2 shows a target and a
camera with its corresponding FOV.

Problem 1 (2.5D Case): Given the camera
and environment models in 2.5D , our goal is to
obtain a representation that captures the topolog-
ical structure of the detectable set for a cam-
era network (i.e., the union of the sets in which
a target is detectable by a camera). The con-
struction of this representation should not rely
on camera or object localization.

The formulation of the problem is very
generic. We are choosing a simplicial represen-
tation because we are after a combinatorial rep-
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Figure 2: Mapping from 2.5D to 2D : A cam-
era and its field of view (FOV) are shown from
multiple perspectives (left and middle). The cor-
responding mapping of this configuration to 2D
is shown on the right. For the 2.5D configura-
tion, the planes displayed bound the space that
can be occupied by the target.

resentation that does not contain metric infor-
mation. We are also after a distributed solution,
i.e. processing information at local nodes.

3.2 Mapping from 2.5D to 2D

The structure of the detectable set for a camera
network becomes clear through an identification
of our 2.5D problem to a 2D problem. Since
the target is constrained to move along the floor
plane, it is possible to map our problem to a 2D
problem. In particular:

• Cameras located at locations (x, y, z) are
mapped to location (x, y) in the plane.

• Objects in our 2.5D domain are mapped to
objects with piecewise linear boundaries in
the plane.

• We can also do a simple identification be-
tween the FOV of a camera to a domain Dα

of a camera in 2D . A point (x, y) in the
plane is in Dα if the target located at that
point intersects the FOV Fα. The set Dα

is the orthogonal projection (onto the xy-
plane) of the intersection between Fα, and

the space between z ≥ 0 and z ≤ htarget.
Since the latter is an intersection of con-
vex sets, and orthogonal projections pre-
serve convexity, then Dα is convex. We can
also check that Dα will be open.

• Also, we can give a 2D description of the
coverage of a camera. A point (x, y) is in
the coverage Cα of camera α if the target
located at (x, y) is detectable by the camera.

3.3 The Problem in 2D

We now proceed by characterizing our problem
after mapping the original configuration from a
2.5D space to 2D . The following definitions are
presented to formalize our discussion.

The Environment: The space under consid-
eration is similar to the one depicted in figure
1 (left), where cameras are located in the plane,
and only sets with piecewise-linear boundaries
are allowed (including object and paths). We as-
sume a finite number of objects in our environ-
ment.

Cameras: A camera object α is specified by:
its position oα in the plane; and an open convex
domain Dα, referred to as the camera domain.

The camera domain Dα can be interpreted as
the set of points visible from camera α when no
objects occluding the field of view are present.
The convexity of this set will be essential for
some of the proofs. Some examples of camera
domains are shown in figure 4.

Definition 1 The subset of the plane occupied
by the i-th object, which is denoted by Oi, is a
connected closed subset of the plane with non-
empty interior and piecewise linear boundary.
The collection {Oi}

No

i=1, where No < ∞ is the
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number of objects in the environment, will be re-
ferred to as the objects in the environment.

Definition 2 Given a camera α, a point p ∈ R
2

is said to be visible from camera α if p ∈

Dα and oα p ∩
(

⋃No

i=1 Oi

)

= ∅, where oα p is the

line between the camera location oα and p. The
set of visible points is called the coverage Cα of
camera α.

We consider the following problem:

Problem 2 (2D Case): Given the camera and
environment models in 2D , our goal is to ob-
tain a simplicial representation that captures the
topological structure of the coverage of the
camera network (i.e., the union of the cov-
erage of the cameras). The construction of this
representation should not rely on camera or ob-
ject localization.

Observation 1 Note that the camera network
coverage has the same homology (i.e. topological
information) as the domain (R2 −

⋃

Oi) if these
two sets are homotopic (i.e., we can continuously
deform one into the other).

4 The CN-Complex

Our goal is the construction of a simplicial com-
plex that will capture the homology of the union
of camera coverage

⋃

Cα. One possible approach
for accomplishing this task is to obtain the nerve
complex (see appendix A) using the set of cam-
era coverage {Cα}. However, this approach will
only work for simple configurations without ob-
jects in the domain. An example illustrating our
claim is shown in figure 3.

The reason figure 3 (right) does not capture
the topological structure of the coverage is be-
cause the hypothesis of the Čech Theorem (see

Figure 3: Examples illustrating nerve complexes
obtained using the collection of camera coverage
{Cα}. One complex captures the correct topo-
logical information (left) but the other does not
(right).

appendix A) is not satisfied (in particular, C1∩C2

is not contractible). From the physical layout of
the cameras and the objects in the environment,
it is clear how we can divide C1 in order to obtain
contractible intersections. We are after a a de-
composition of the coverage that can be achieved
without knowing the exact location of objects in
the environment.

4.1 The Decomposition Theorem

Before we proceed let us consider the following
useful definitions:

Definition 3 Given the objects {Oi}
No

i=1, a
piecewise linear path Γ : [0, 1] → R

2 is said to
be feasible if Γ([0, 1]) ∩ (

⋃

Oi) = ∅.

Definition 4 Given camera α with camera do-
main Dα and corresponding boundary ∂Dα, a
line Lα is a bisecting line for the camera if:

• Lα goes through the camera location oα.

• There exists a feasible path Γ : [0, 1] → R
2

such that for any ǫ > 0 there exists a δ such
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that 0 < δ < ǫ, Γ(0.5− δ) ∈ Cn, Γ(0.5+ δ) /∈
Cα, Γ(0.5) ∈ Lα, and Γ(0.5) /∈ ∂Dα.

If we imagine a target traveling through the
path Γ, we note that the last condition in the def-
inition of a bisecting line identifies when an oc-
clusion event is detected (i.e., the target tran-
sitions from visible to not visible, or viceversa).
However, we will ignore the occlusion events due
to the target leaving through the boundary of
the camera domain Dα.

Definition 5 Let {Lα,i}
NL

i=1 be a finite collection
of bisecting lines for camera α. Consider the set
of adjacent cones in the plane {Kα,j}

NC

j=1 bounded

by these lines, where NC = 2NL, then the de-
composition of Cα by lines {Lα,i} is the col-
lection of sets

Cα,j := Kα,j ∩ Cα.

Note that the decomposition of Cα is not a
partition since the sets Cα,j are not necessarily
disjoint.

Figure 4: Three examples of camera domains
Dα. Note that cameras can be inside or out-
side these sets. Our camera model spans projec-
tion models from perspective camers to omni-
directional cameras. Examples of decomposi-
tions are shown for each set Cα.

The construction of the camera network
complex (CN -complex) is based on the identi-
fication of bisecting lines for the coverage of each

individual camera. This construct will capture
the correct topological structure of the coverage
of the network.

Figure 5 displays examples of CN -complexes
obtained after decomposing the coverage of each
camera using their corresponding bisecting lines.
The CN -complex captures the correct topolog-
ical information, given that we satisfy the as-
sumptions made for the model described in sec-
tion 3. The following theorem, which proof can
be found in appendix B, states this fact.

Figure 5: Examples of CN -complexes. On the
left, camera 1 is decomposed into three regions,
each of which becomes a different vertex in our
complex. On the right, cameras 1 and 2 are both
decomposed into three regions.

Theorem 1 (Decomposition Theorem)
Let {Cα}

N
α=1 be a collection of camera coverage

where each Cα is connected and N is the number
of cameras in the domain. Let {Cα,k}(α,k)∈AD

be
the collection of decomposed sets by all possible
bisecting lines, where AD is the set of indices in
the decomposition. Then, any finite intersection
⋂

(α′,k′)∈A Cα′,k′ , where A is a finite set of indices,
is contractible.

Hence, the hypothesis of the Čech Theorem
is satisfied if we have connected coverage which
are decomposed by all of their bisecting lines.
This implies that computing the homology of the
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CN -complex returns the appropriate topological
information about the network coverage.

Observation 2 Note that there are many ways
to decompose a set in order to obtain subsets with
contractible intersections. However, by using the
bisecting lines, we ensure that the decomposition
can be done locally (at each camera node) without
knowledge of the physical structure of the envi-
ronment.

We note that the steps required to build the
CN -complex are two-fold:

• Identify all bisecting lines and decompose
each camera coverage.

• Determine which of the resulting sets inter-
sect.

The first step makes sure that any intersection
will be contractible. The second step allows us to
find the simplices for our representation. These
two steps can be completed in different ways
which depend on the scenario under consider-
ation. In the section 5 and 6, we illustrate the
construction of the CN -complex for a very spe-
cific scenario.

4.2 From 2D to 2.5D

We can build the CN -complex by decomposing
each camera coverage using its bisecting lines
and determining which of the resulting sets in-
tersect. However, a physical camera only has
access to observations available in its image do-
main Ω3D. Therefore, it is essential to determine
how to find bisecting lines using information in
the image domain.

We note that occlusion events occur when the
target leaves the coverage Cα of camera α along
the boundary of the camera domain Dα or along

a bisecting line. We can verify that a target leav-
ing through the boundary of Dα will be detected
in the image domain Ω3D

α as having the target
disappering/appearing through the boundary of
Ω3D

α . If the target leaves Cα through one of the
bisecting lines, we will observe an occlusion event
in the interior of Ω3D

α . Note that bisecting lines
in the 2D domain correspond to vertical planes in
the 2.5D configuration, whose intersection with
the FOV of the camera map to lines in Ω3D

α .
Hence, all that is required is to find the line seg-
ment in which an occlusion event takes place in
the image domain. From an engineering point of
view, this can be done by performing some sim-
ple image processing to find the edge along which
target disappears/appears in an image. The re-
sult will be a decomposition of the image domain
Ω3D

α which will correspond to a decomposition
of the camera coverage Cα. We also emphasize
that these computations can be done locally at
a camera node without any need to transmit in-
formation.

The problem of finding intersections of the
sets for the 2D problem corresponds to having
concurrent detections at corresponding cameras
for the case of a single target in the environ-
ment. Finding overlap between these regions
can be solved for the multiple-target case by
using approaches such as the ones outlined in
[11, 12, 17, 16, 5] in which correspondence and
time correlation are exploited.

5 Simulations in 2D

We consider a scenario similar to the one shown
in figure 1 (left) in which a wireless camera net-
work is deployed and no localization informa-
tion is available. Each camera node will be as-
sumed to have certain computational capabilities
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and they can communicate wirelessly with each
other.

The assumptions for this particular simulation
are:

The Environemt in Simulation: The ob-
jects in the environment will have piecewise lin-
ear boundaries as described earlier. The location
of the objects will be unknown. The location and
orientation of the cameras is also unkown.

Cameras in Simulation: A camera α has the
following properties:

• The domain Dα of a camera in 2D will be
the interior of a convex cone with field of
view θα < 180o. We use this model for sim-
plicity in our simulations.

• A local camera frame Ψ2D
α is chosen such

that the range of the field of view is
[−θα/2, θα/2] when measured from the y-
axis.

• Its camera projection Π2D
α : Dα → R, is

given by

Π2D
α (p) = px/py,

where p is given in coordinate frame Ψ2D
α .

The image of this mapping, i.e. Π2D
α (Dα),

will be called the image domain Ω2D
α .

The Target in Simulation: A single point
target is considered in order to focus on the con-
struction of the complex without worrying about
correspondence/identification of our target.

Throuhgout our simulations we will have the
target moving continuously through the environ-
ment. At each time step the cameras compute
their detections of the target and use their obser-
vations to detected bisecting lines. Observations

at the regions obtained after decomposition us-
ing the bisecting lines are stored. These obser-
vations are then combined to determine inter-
sections between the regions which become sim-
plices in the CN -complex.

As mentioned before, the topology of the en-
vironment can be characterized in terms of its
homology. In particular we will use betti num-
bers β0 and β1 (see appendix A). The β0 number
tells us the number of connected components in
the coverage while β1 gives the number of holes.
The PLEX software package [1] is used for com-
puting the homologies and corresponding betti
numbers.

Figure 6: On the left, a three-camera layout
with two occluding objects, where C3 is shown.
On the right, a four-camera layout in a circular
hallway-type configuration, where C1 is shown.
Dashed lines represent corresponding bisecting
lines. Dotted curves are the paths followed by
the target.

Figure 6 (left) is a three-camera layout with
two objects in their field of view. In this case, we
observe three bisecting lines for camera 1, two for
camera 2, and four for camera 3. The coverage
C3 is decomposed into 5 regions, namely {C3,a,
C3,b, C3,c, C3,d and C3,e}. The list of maximal sim-
plices obtained by our algorithm is: [1a 1b 1c 1d],
[2a 2b 2c], [3a 3b 3c 3d 3e], [1a 1b 2c 3c],
[1d 2a 3c], [2a 2b 3a], [1a 2b 2c 3a], [1a 2c 3a 3b],
[1a 2c 3b 3c], [1a 2c 3c 3d], [1a 1b 1c 2c 3d 3e],
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[1c 1d 3e] and [1d 2a 3e]. The homology com-
putations returned betti numbers: β0 = 1 and
β1 = 2. This agrees with having a single con-
nected component for the network coverage and
two objects inside the coverage of the cameras.

In figure 6 (right) we observe similar results for
a configuration that can be interpreted as a hall-
way in a building floor. There is a single bisect-
ing line for all cameras. Our algebraic analysis
returns β0 = 1 and β1 = 1. The latter identifies
a single hole corresponding to the loop formed
by the hallway structure. The list of maximal
simplices recovered by our algorithm: [3b 4a 4b],
[2b 3a 3b], [1b 2a 2b], [1a 1b 4b].

6 Experimentation

In order to demonstrate how the mathematical
tools described in the previous sections can be
applied to a real wireless sensor network, we
setup an experiment tracking a robot in a sim-
ple maze. Figure 7 shows the layout to be used.
We placed a sensor network consisting of CIT-
RIC camera motes [4] at several locations in our
maze and let a robot navigate through the en-
vironment. The CN -complex is constructed for
this particular coverage and used for tracking in
this representation. The homologies were com-
puted using the PLEX software package [1].

Time synchronization is required in order to
determine overlaps between the different camera
regions. This is accomplished by having all of
the camera nodes sharing time information with
one another.

The model is constructed by having each cam-
era node perform local computations. Each cam-
era node first looks for bisecting lines (as shown
in figure 8) in order to decompose its coverage,
and the detections of the target on the corre-

Figure 7: Layout used for our experiment. Left:
a diagram showing the location of the different
cameras; Bottom Right: A picture of our exper-
imental maze. Top Right: The CITRIC camera
motes used for our experiments.

sponding regions are stored over time. In our
implementation, occlusion lines are detected by
looking for occlusion events over time. If this
event did not correspond to an occlusion along
the boundary of the image domain, then we es-
timate an occlusion line. Note that the informa-
tion extracted from each camera node is just a
decomposition of the image domain with a list of
times at which detections were made. The com-
munication requirements are minimal due to this
reduction on the data.

The complex is built by combining all lo-
cal information from the camera nodes. Each
camera node transmits the history of its de-
tections wirelessly to a central computer that
creates the CN -complex. The resulting com-
plex contains the maximal simplices: [1a 1b 4b],
[1b 2a 2b], [2b 3a 3b], [3b 4a 4b 5b], [3b 5b 6],
and [5a 5b 6]. A pictorial representation of the
complex is shown in figure 9 (right plots).
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Figure 8: Left: View of camera 5 from the layout
in figure 7 before any bisecting lines are found.
Right: Same view after a bisecting line (shown
in black) has been found.

As mentioned earlier, this representation can
then be used for tracking and navigation with-
out actual metric reconstruction of the environ-
ment. Figure 9 shows a set of recorded paths for
our robot. By determining which simplices are
visited by the robot’s path we can extract a path
in the complex as shown by the red path in the
complexes of figure 9. The main advantage of
this representation is that the path in the com-
plex gives a global view of the trajectory of the
robot, while local information can be extracted
from single camera views.

It is possible to identify paths in the simpli-
cial representation that are homotopic (i.e., that
can be continuously deformed into one another).
The tools required for these computations are
already available to us from appendix A. In par-
ticular, by taking two paths that start and end
at the same locations and forming a loop, we
can verify that they are homotopic if they are
the boundary of some combination of simplices.
Equivalently, since a closed loop σ is just a col-
lection of edges in C1, we need to check whether
the loop σ is in B1 (i.e., in the range of ∂2).
This is just a simple algebraic computation. By
putting the top and middle paths from figure 9
together we note that the resulting loop is not
in the range of ∂2 (i.e., they are not homotopic).

Figure 9: Several paths for our robot in the maze
(highlighted in red on the left) and correspond-
ing mapping to the CN -complex (highlighted in
red on the right). These paths can be easily
compared to each other by using the algebraic
topological tools covered in appendix A. The
problem reduces to that of simple linear algebra
computations.

On the other hand, the top and bottom paths
can be easily checked to be homotopic.

Similarly, for coordinate-free navigation pur-
poses, this representation can be used to deter-
mine the number of distinct paths from one loca-
tion to another. It is also possible to find paths in
the CN -complex and use local information from
each camera to generate a physical path in the
environment.
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7 Summary and Comments

An algebraic representation of a camera network
coverage is obtained through the use of discrete
observations from each camera node. The math-
ematical tools used for this purpose are those
of algebraic topology. In particular, we showed
that given enough observations our model does
capture the correct topological information.

The experiment using wireless camera nodes
illustrates how this simplicial representation of
the camera coverage can be used to track and
compare paths in a wireless camera network
without any metric calibration information. In
particular, these results can also be extended to
coordinate-free navigation, where our represen-
tation can give an overall view of how to ar-
rive at a specific location, and the transitions
between simplicial regions can be accomplished
in the physical space by local visual feedback
from single camera views. Using this proposed
model allows for local processing at each node
and minimal wireless communication. A list of
times at which occlusion events were observed
is all that needs to be transmitted. Also, inte-
ger operations are all that are required to per-
form the algebraic operations described in this
paper [8], which opens the doors to potential dis-
tributed implementation on platforms with low-
computational power.
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A Mathematical Background

In this section we cover the concepts from algebraic topol-
ogy that will be used throughout this paper. This section
contains material adapted from [7, 6] and it is not in-
tended as a formal introduction to the topic. For a proper
introduction to the topic, the reader is encouraged to read
[13, 8, 7].

A.1 Simplicial Homology

Definition 6 Given a collection of vertices V we define
a k-simplex as a set [v1 v2 v3 . . . vk+1] where vi ∈ V
and vi 6= vj for all i 6= j. Also, if A and B are simplices
and the vertices of B form a subset of the vertices of A,
then we say that B is a face of A.

Definition 7 A finite collection of simplices in R
n is

called a simplicial complex if whenever a simplex lies
in the collection then so does each of its faces.

Definition 8 The nerve complex of a collection of sets
S = {Si}

N
i=1, for some N > 0, is the simplicial com-

plex where vertex vi corresponds to the set Si and its k-
simplices correspond to non-empty intersections of k + 1
distinct elements of S.

The following statements define some algebraic struc-
tures using these simplices.

Definition 9 Let {si}
N
i=1 (for some N > 0) be the k-

simplices of a given complex. Then, the group of k-
chains Ck is the free abelian group generated by {si}.
That is,

σ ∈ Ck iff σ = α1s1 + α2s2 + · · ·αNsN

for some αi ∈ Z. If there are no k-simplices, then Ck :=
0. Similarly, C−1 := 0.

Definition 10 Let the boundary operator ∂k applied
to a k-simplex s, where s = [v1 v2 · · · vk+1], be defined
by:

∂ks =

k+1
∑

i=1

(−1)i+1[v1 v2 · · · vi−1 vi+1 · · · vk vk+1],

and extended to any σ ∈ Ck by linearity.
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A k-chain σ ∈ Ck is called a cycle if ∂kσ = 0. The
set of k-cycles, denoted by Zk, is the ker ∂k and forms a
subgroup of Ck. That is,

Zk := ker ∂k.

A k-chain σ ∈ Ck is called a boundary if there exists
ρ ∈ Ck+1 such that ∂k+1ρ = σ. The set of k-boundaries,
denoted by Bk, is the image of ∂k+1 and it is also a sub-
group of Ck. That is,

Bk := im ∂k+1.

Even further, we can check that ∂k(∂k+1σ) = 0 for any
σ ∈ Ck+1, which implies that Bk is a subgroup of Zk.

Observe that the boundary operator ∂k maps a k-
simplex to its (k − 1)-simplicial faces. Further, the set
of edges that form a closed loop are exactly what we de-
note by the group of 1-cycles. We will be interested in
finding out holes in our domains; that is, cycles that can-
not be obtained from boundaries of simplices in a given
complex. This observation motivates the definition of the
homology groups.

Definition 11 The k-th homology group is the quo-
tient group

Hk := Zk/Bk.

The homology of a complex is the collection of all ho-
mology groups. The rank of Hk, denoted the k-th betti
number βk, gives us a coarse measure of the number of
holes. In particular, β0 is the number of connected compo-
nents and β1 is the number of loops that enclose different
“holes” in the complex.

A.2 Example

In figure 10 we observe a collection of triangular shaped
sets labeled from 1 to 5. The nerve complex is obtained
by labeling the 0-simplices (i.e., the vetices) in the same
way as the sets. The 1-simplices (i.e., the edges in the
pictorial representation) correspond to pairwise intersec-
tion between the regions. The 2-simplex correspond to
the intersection between triangles 2, 4 and 5.

For the group of 0-chains C0, we can identify the
simplices {[1], [2], [3], [4], [5]} with the column vectors
{v1, v2, v3, v4, v5}, where v1 = [1, 0, 0, 0, 0]T and so on.

For C1, we identify {[1 2], [2 3], [2 4], [2 5], [3 5], [4 5]}
with the column vectors {e1, e2, e3, e4, e5, e6}, where we
define e1 = [1, 0, 0, 0, 0, 0]T and so on.

Figure 10: On the left, a collection of sets is displayed.
On the right, a pictorial representation of the correspond-
ing nerve complex. The complex is formed by the sim-
plices: [1], [2], [3], [4], [5], [1 2], [2 3], [2 4], [2 5], [3 5],
[4 5] and [2 4 5]. Note that the actual coordinates of the
points are irrelevant for our pictorial representation.

Similarly for C2, we identify [2 4 5] with f1 = 1.
As we mentioned before, ∂k is the operator that maps

a simplex σ ∈ Ck to its boundary faces. For example, we
have:

∂2[2 4 5] = [4 5]− [2 5] + [2 4] iff ∂2f1 = e6 − e4 + e3,

∂1[2 4] = [4] − [2] iff ∂1e3 = v4 − v2.

That is, ∂k can be expressed in matrix form as:

∂1 =













−1 0 0 0 0 0
1 −1 −1 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
0 0 0 1 1 1













, ∂2 =

















0
0
1
−1
0
1

















.

Since C−1 = 0,

H0 = Z0/B0 = ker ∂0/im ∂1 = C0/im ∂1.

We can verify that

β0 = dim(H0) = 1.

Hence, we recover the fact that we have only one con-
nected component in the diagram of figure 10. Similarly,
we can verify that

β1 = dim(H1) = dim(Z1/B1) = dim(ker ∂1/im ∂2) = 1,

which tells us that the number of holes in our complex is
1. Also, Hk = 0 for k > 1 (since Ck = 0).

A.3 Čech Theorem

Now we introduce the Čech Theorem which has been used
in the context of sensor networks with unit-disk coverage
[6] and has been proved in [3]. Before we proceed further,
we will require the following definition:
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Definition 12 Given two spaces X and Y , a homotopy
between two continuous functions f0 : X → Y and f1 :
X → Y is a continuous 1-parameter family of continuous
functions ft : X → Y for t ∈ [0, 1] connecting f0 to f1.

Definition 13 Two spaces X and Y are said to be of the
same homotopy type if there exist functions f : X → Y
and g : Y → X with g ◦ f homotopic to the identity map
on X and f ◦ g homotopic to the identity map on Y .

Definition 14 A set X is contractible if the identity
map on X is homotopic to a constant map.

In other words, two functions are homotopic if we can
continuously deform one into the other. Also, a space is
contractible if we can continuously deform it to a single
point. It is known that homologies are an invariant of
homotopy type; that is, two spaces with the same homo-
topy type will have the same homology groups.

Theorem 2 (Čech Theorem) If the sets {Si}
N
i=1 (for

some N > 0) and all nonempty finite intersections are
contractible, then the union

⋃N

i=1 Si has the homotopy
type of the nerve complex.

That is, given that the required conditions are satis-
fied, the topological structure of the union of the sets is
captured by the nerve. We observe that in figure 10 all
of the intersections are contractible. Therefore, we can
conclude that the extracted nerve complex has the same
homology as the space formed by the union of the trian-
gular regions.

B Proof of Theorem 1

Throughout this section we consider a finite set of cam-
eras indexed by α ∈ {1, 2, 3 · · ·Nc} with corresponding
domains Dα and coverage Cα. Each camera coverage is
decomposed by all possible bisecting lines {Lα,i}. The
collection {Cα,j} is the result of this decomposition, where
Cα,j := Cα ∩ Kα,j and Kα,j is the convex cone resulting
from decomposing the plane using the lines {Lα,i} (see
definition 4).

Observation 3 It may be useful for the reader to think
of the set Cn (the visible set after object occlusions have
been removed) as the intersection of a convex set (i.e., the
camera domain) with a star convex set (due to visibility
from oα).

Observation 4 The number of bisecting lines for a given
camera in our environment is finite since we are consider-
ing finite number of object in the coverage with piecewise
linear boundaries.

Definition 15 The line segment joining points p
and q is denoted by p q. The line passing through
points p and q is denoted by L(p, q).

Definition 16 The triangle formed by points a, b
and c ∈ R

2 is the convex hull of these three points and it
is denoted ∆a,b,c.

Lemma 1 Given that oα, p ∈ Cα then oα p ∈ Cα.

Proof
Since, oα and p ∈ Cα ⊂ Dα, then oα p ⊂ Dα due

to convexity of Dα. Let r ∈ oα p. If r is not visible
then oα r ∩

⋃

Oi 6= ∅ (where {Oi} is the collection of
objects in the environment). However, this implies that
oα p∩

⋃

Oi 6= ∅. Hence, we conclude that p is not visible,
which is a contradiction. Therefore, r must be visible.
Since r was arbitrary then oα p is visible. �

Lemma 2 Given that p, q ∈ Cα with

L(p, oα) = L(q, oα),

then p q ∈ Cα. That is, if p and q are visible and are in
the same line of sight, then the line joining them is visible
too.

Proof
This follows from the definition of Cα and the domain

of a camera Dα. We know that Dα is convex, so p q ⊂ Dα

since p, q ∈ Cα ⊂ Dα.
From our assumption L(p, oα) = L(q, oα), it is possible

to conclude that for r ∈ p q then r ∈ Dα, and r ∈ oα p or
r ∈ oα q. Basically, there is only two cases, both p and q
on the same side of oα or on opposites sides. Either way,
r must be in oα p or oα q.

Without lost of generality, assume r ∈ oα p. If r was
not visible, the

oα r ∩
⋃

Oi 6= ∅

(where {Oi} is the collection of sets representing the ob-
jects in the space). This implies that

oα p ∩
⋃

Oi 6= ∅,

since oα r ⊂ oα p. This implies that p /∈ Cα which is a
contradiction. Therefore, r must be visible too. �
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Figure 11: Steps on the construction of a monotone convex path for lemma 6.

Lemma 3 Given a closed path Γ([0, 1]) ⊂ Cα, then the
space enclosed by Γ is also in Cα.

Proof
Let R be the enclosed area by the path Γ. Since Γ :

[0, 1] → R
2 is bounded, then

∃M > 0 such that ||Γ(t) − oα|| < M,

where oα is the location of camera α. Hence,

r /∈ R if ||r − oα|| > M.

Also, if a point r′ is connect to r /∈ R through a path γ
that does not cross Γ, then r′ /∈ R.

Let p ∈ R and define

L := L(p, oα) ∩ Γ([0, 1])

(i.e., points in Γ and in the line passing through p and
oα), then there must be points q1, q2 ∈ L such that and
p ∈ q1 q2. Otherwise, there would exist a point r ∈ L with
||r−oα|| > M (i.e., r /∈ R) such that r p does not intersect
Γ([0, 1]). This implies p /∈ R which is a contradiction.
Therefore, p ∈ q1 q2.

Next, we consider three cases:

• Assume q1 6= oα and q2 6= on. Since q1, q2 ∈
Γ([0, 1]) ⊂ Cn with L(q1, oα) = L(q2, oα), then
p ∈ q1 q2 ⊂ Cn by lemma 2 (which makes p visi-
ble).

• Assume q1 6= oα and q2 = oα. Then p ∈ oαq2 ⊂ Cα

by lemma 1.

• Assume q1 = q1 = oα. Then, p = oα ∈ Cα.

In all cases p is visible, and since p was arbitrary we
conclude tha R is visible. �

The previous lemmas are also true if we replace Cα by
the set Cα,j resulting from a decomposition of the cover-
age. The reason why it works is because we can think of
Cα,j as being the coverage of a camera with a domain

Dα,j := Dα ∩ Kα,j ,

where Kα,j is the corresponding convex cone that gen-
erates the region Cα,j . This new domain is still convex
which is the property used in the previous lemmas. How-
ever, note that this Dα,j is not open.

Lemma 4 Every connected component of
⋂

(α,j)∈A
Cα,j,

where A is a finite set of indices, is simply connected.

Proof Let Γ be a closed loop in
⋂

(α,j)∈A
Cα,j . By the

previous lemma, the space enclosed by Γ is inside Cα,j for
all (α, j) ∈ A. �

Definition 17 Let Γ : [0, 1] → R
2 be a path connecting

points p to q (i.e. Γ(0) = p and Γ(1) = q). We define
the region enclosed by Γ, denoted by R(Γ), to be the
region enclosed by the set Γ([0, 1]) ∪ p q.

Definition 18 A path Γ : [0, 1] → R
2 connecting points

p and q is said to be a convex path if R(Γ) is convex.

Definition 19 A non-intersecting path Γ : [0, 1] → R
2

is monotone with respect to camera α if for any
p ∈ S1

α, where S1
α is the unit circle centered at oα, we have

that Γ([0, 1])∩L(p, oα) has a single connected component.

Lemma 5 Let R be a bounded convex set contained be-
tween the lines L(p, oα) and L(q, oα), where p and q ∈ R.
Then, either p q is the only path in R joining p to q, or
there are exactly two distinct images of monotone paths
connecting p to q (only intersecting at the end points),
which form the boundary of R.

The figure above illustrates the results from the previ-
ous lemma.

Lemma 6 Given that Cα is connected with p and q ∈ Cα,
then there exists a path Γ connecting these points that
is convex and monotone with respect to camera α with
Γ([0, 1]) ⊂ Cα ∩ ∆p,q,oα

.
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Proof
We present an outline of the proof of this result.
Let p and q ∈ Cα, where Cα is connected.
The reader may be tempted to try the path p oα ∪oαq.

However, we are not assuming oα ∈ Cα. Our proof takes
care of this case too.

Since Cα is connected then there exists a path Γ0 that
connects p to q with Γ0([0, 1]) ⊂ Cα. We illustrate this
in the diagram in figure 11 (a) in which the gray region
corresponds to the coverage under consideration.

Our first objective will be construct a path that is con-
tained within ∆p,q,oα

.
We start with path Γ0 and consider the line L(p, oα)

(see figure 11 (a) ). This line will intersect the Γ0 at
points {rk}. By lemma 2, we know that the line segments
between them are visible, so we can construct path Γ1 (as
shown in figure 11 (b)) which does not cross L(p, oα).

Next, we consider the intersections between L(q, oα)
and Γ1 (see figure 11 (b) ). As in the previous case, we
can built a path Γ2 which does not cross L(q, oα).

If we consider the line L(p, q), then it will intersect
the line Γ2 at points {rk} (see figure 11 (c) ). Consider
a segment of Γ2 that is outside of the triangle ∆p,q,oα

,
which intersects L(p, q) at r1 and r2. For any r ∈ r1 r2,
we see that r ∈ Dα since rk ∈ Dα and Dα is convex. Also,
there exists of a point r′ ∈ L(r, oα) ∩ Γ2([0, 1]) which is
further away from oα than r. Otherwise, the line segment
in Γ between r1 and r2 would not be outside the ∆p,q,oα

.
Therefore, if r was not visible then r′ would not be visible
which is a contradiction. Hence, r must be visible.

This implies that we can connect r1 to r2 by the
line segment r1 r2 and construct path Γ3 which is inside
∆p,q,oα

.
In order to make Γ3 into a convex path, we take the

convex hull of Γ3 and by lemma 5 we know that there are
at most two monotone paths to choose from (see figure 11
(d)). We choose the path Γ that is closest to oα. Clearly
Γ is convex. We can see that Γ is visible since for any line
L(r, oα) for r ∈ Γ3([0, 1]), the line will have to intersect Γ
at some location s closer to oα than r.

This process yields the desired monotone and convex
path Γ (see figure 11 (e)) which images is in Cα ∩∆p,oα,q.
�

Lemma 7 Given that Cα is connected with p and q ∈
Cα,j for some j, then there exists a path Γ connecting
these points that is convex and monotone with respect to
camera α with Γ([0, 1]) ⊂ Cα,j ∩ ∆p,q,oα

.

Proof Since p and q ∈ Cα,j , then p and q ∈ Cα ∩ Kα,j .
By the previous lemma, we know that there exists a path
Γ such that Γ([0, 1]) ⊂ Cα. Note that Γ([0, 1]) is in-
side the cone formed by the lines L(p, oα) and L(q, oα)
by construction. This cone must be contained within
Kα,j , otherwise p and q could not be in Kα,j . There-
fore, Γ([0, 1]) ⊂ Kα,j ∩ Cα = Cα,j . �

Lemma 8 Let Γ : [0, 1] → R
2 be a feasible monotone

path connecting p and q ∈ Cα with Γ([0, 1]) ⊂ Dα for some
camera α. If an object O is within the region enclosed
by oα p ∪ Γ([0, 1]) ∪ q oα then there exist a bisecting line
L passing through a point in Γ that does not intersect
L(p, oα) and L(q, oα) (not including these lines).

Proof
For simplicity we just give an outline to this proof.
Since Γ([0, 1]) ⊂ Dα, we know that no point in Γ will

be in the boundary of Dα since Dα is open.
Since oα p ∪ Γ([0, 1]) ∪ q oα encloses an object, there

exists a transition between having a visible and a not-
visible point in the path (i.e. an occlusion event). This
is guaranteed since at least a point in the path is visible,
and not all the points can be visible due to the object O.

Assume that the transition event occurs in L(p, oα)
or L(q, oα) at some point r ∈ Γ([0, 1]) and no where else.
Without lost of generality assume that r p ⊂ Γ([0, 1]) (due
to monotonicity of path). The object would have to oc-
clude r too (since objects are closed). Then either the
path is not feasible or p is not visible which contradicts
our assumption. Therefore, a transition must occur in
some other point along Γ and not in these lines. �

Theorem 3 (Decomposition Theorem) Let {Cα}
N
α=1

be a collection of camera coverage where each Cα is con-
nected and N is the number of cameras in the domain.
Let {Cα,k}(α,k)∈AD

be the collection of decomposed sets
by all possible bisecting lines, where AD is the set of in-
dices in the decomposition. Then, any finite intersection
⋂

(α′,k′)∈A Cα′,k′ , where A is a finite set of indices, is con-
tractible.
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Proof For simplicity we just give an outline to this proof
for two cameras. The proof for multiple cameras can be
completed by induction.

Let p and q ∈ Cα1,k1
∩ Cα2,k2

for some indices (αi, ki).

Part I:

First, consider cameras α1 and α2 in the same side of
the line L(p, q). We know that there exist convex mono-
tone paths Γi connecting p to q such that Γi([0, 1]) ⊂
Cαi,ki

∩ ∆p,oαi
,q for i = 1, 2 (see left plot in figure 12).

Figure 12: Illustration of the construction of Γ.

By lemma 5, we can choose a path Γ corresponding to
a segment of the boundary of R := R(Γ1) ∩ R(Γ2) (see
right plot in figure 12). We choose the path that consists
of segments from Γ1 and Γ2 so Γ will be feasible. We
note that lemma 5 also tells us that Γ is monotone with
respect to camera αi (since R is between L(p, oαi

) and
L(q, oαi

)). Also,

Γ ⊂ R = R(Γ1) ∩R(Γ2) ⊂ Dα1
∩ Dα2

due to convexity of Dαi
.

By lemma 8, we know that there are no objects in-
side the regions enclosed by p oαi

∪ Γ([0, 1])∪ q oαi
(since

otherwise there would be a bisecting line and we as-
sumed that we already decomposed using all bisecting
lines). Hence, s oαi

does not intersect any object for
s ∈ Γ([0, 1]), which implies that Γ is visible by both cam-
eras (i.e. Γ([0, 1]) ⊂ Cα1,k1

∩ Cα2,k2
).

Part II:

Now we consider cameras α1 and α2 at opposite sides
of the line L(p, q). There are two main cases to consider.

Case 1:

For the first case we consider a configuration as seen
in figure 13 (left).

We would like to conclude that the path p q is visible
by both cameras. Assume, it is only visible up to a point r
(not including this point since objects are closed). Then,
an object must intersect r oα1

or r oα2
. By lemma 8,

we notice that the interior of ∆r,oαi
,q must be empty;

otherwise, there would be a bisecting line.

Figure 13: Illustrations for Case 1.

Also, since Dα2
is open, we can find a ball B around

q that is contained in Dα2
(see right plot in figure

13(right)). We choose a point s ∈ B ∩ q oα1
.

Then, ∆p,s,q ⊂ Dα1
∩Dα2

. From there, we can choose
a point s′ as shown in the diagram such that s′ q ⊂ Dα2

is feasible. This is possible since there are no objects
in ∆r,oα1

,q. However, if there was an object intersecting
r oα2

, then L(r, oα2
) would be a bisecting line. But, it is

not. So, there is no objects interseting r oα2
.

Similarly, there are no objects intersecting r oα1
. This

means that r is visible by both cameras, which contradicts
our initial assumption. This shows that p q is visible by
both cameras, i.e. p q ⊂ Cα1,k1

∩ Cα2,k2
.

Case 2:
For the second case, we con-

sider a configuration as shown to
the left.

By following the same analy-
sis as before, we can show that
p r − {r} and r q − {r} must be
visible by both cameras. How-
ever, we could have an object in

oα1
oα2

. Nevertheless, objects must enclose some area
which does not allow an object to be contained in this
line. Therefore, p q ⊂ Cα1,k1

∩ Cα2,k2
. �
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